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state 5, in accord with the observed enantioselectivity. The 
origin of the unusual enantioselection with the reagent bearing 
/3,/3,/8-trifluoroethoxy or a bulky aryloxy group remains un­
clear.17 Electronic effects of phenyl group on the stability of 
the transition state are also to be clarified. 
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Triangular Iron-Silver Clusters 

Sir: 

Despite recent activity in the metal cluster field,1 relatively 
few systematic methods are available for the introduction of 
a metal fragment into a bi- or polynuclear framework.2'3 Thus, 

for example, mixed metal clusters in which a group 1 b element, 
Cu, Ag, or Au, is part of a cluster polyhedron4 are rare al­
though there is evidence that these metals, especially gold,5 

have a propensity to form stable clusters. We describe here a 
simple and possibly versatile route to clusters containing silver 
and iron group atoms, which involves the addition of hydro­
carbon soluble silver salts to neutral binuclear iron carbonyl 
complexes. In these reactions the d10 silver ion can be regarded 
as a Lewis acid, interacting with an electron-rich metal car­
bonyl species. This approach is thus the reverse of that recently 
described by Stone and co-workers6 where the electronically 
unsaturated transition metal carbonyl complex Os3(CO)1OH2 

was used as an electrophilic center for attack by nucleophilic 
d i 0 Ni, Pt, and Au compounds. 

The compounds I (R = Ph; R' = NMe2 , NEt2 , NPr2", 
NHMe, NHEt, NHC 6 H n -C , NC5H10-C, NHPh) can be 
synthesized in high yield via the addition of primary or sec­
ondary amines across the triple bond of the <r,7r-acetylide in 
11. Treatment of I (R = Ph; R/ = NHMe) in benzene with an 
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equimolar quantity of silver perchlorate in benzene afforded 
(90%) an immediate crystalline precipitate of an adduct 
Fe2(CO)6[CHC(R)R7KPPh2)AgClO4 (III, R = Ph; R' = 
NHMe): mp 147 0 C dec; KCO) (THF) 2034 (m), 1991 (s), 
1955 (m, br), 1940 (m,br) cm - 1 . The complex is indefinitely 
stable in air in the solid state, insoluble in petroleum ether, 
sparingly soluble in toluene, and very soluble in tetrahydro-
furan. Solutions in tetrahydrofuran are stable for several hours 
under nitrogen. The 1H NMR spectrum of III (acetone-rf6,60 
MHz) (8 (wrt Me4Si) 2.75 (s, C-H) , 3.05 (d, 7 = 1 0 Hz, 
CH3), 6.7-7.3 (m, C6H5)) was very similar to that of I (C6D6) 
(1.65 (s, C-H) , 1.80 (d, J = 6 Hz, CH3) , 6.7-7.3 (m, C6H5)) 
except for a marked downfield shift of the - C H and CH 3 res­
onances. In neither case was the coupled N-H resonance ob­
servable. The 3 i P spectrum at 183 K showed two doublets (5 
(85% H3PO4) 173.4 ppm (V107Ag-P = 28.22, V 1 0 9 ^ p = 32.40 
Hz) due to coupling of phosphorus with the magnetic silver 
nuclei 107Ag and 109Ag of spin '/2- At 300 K, a broad doublet, 
with an average Ag-3 1P coupling was observable probably 
owing to solvent exchange processes at the coordinated silver 
atom. Structural details were revealed by a single-crystal X-ray 
analysis. Red prisms of Fe 2 (CO) 6 [CHC(Ph)NHMe]-
(PPh2)AgClO4-C6H6-C6H5Me crystallize in the triclinic space 
group Pl with a = 14.101 (3), b = 10.654 (4), <? = 15.777(4) 
A; a = 93.68 (4), (3 = 114.27 (2), 7 = 95.03 (3)°. With Z = 
2 and a molecular weight of 974.71 the calculated density of 
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Figure 1. A perspective view of the molecular structure of Fe2(CO^-
[CHC(Ph)NHMe](PPh2)AgCIO4 showing atomic numbering. For the 
sake of clarity the molecule of benzene of crystallization, the weakly 
coordinated toluene molecule, and the perchloratc anion are not shown. 

1.511 g cm -1 agrees with the value measured by flotation in 
C6H12/CCI4 (1.51 g cm -3). The structure solution and re­
finement were based on the intensities8 of 4617 reflections 
measured on a GE-XRD-6 Datex automated diffractometer. 
Standard heavy-atom methods were used. At the present state 
of refinement R and Rw are 0.046 and 0.056, respectively. An 
ORTEP Il plot of the molecular structure is shown in Figure 1. 
The basic trimetallic skeleton consists of an almost equilateral 
triangle of two iron atoms and a silver atom with the Fe-Fe 
bond bridged by a diphenylphosphido group and a single 
carbon atom of a dipolar iminium ligand Me(H)+N=C-
(Ph) - -CH. 9 The two Ag-Fe distances (Ag-Fe( 1) of 2.685 
(1) A and Ag-Fe(2) of 2.703 (1) A) are comparable to the 
Fe( 1 )-Fe(2) bond length (2.682 (1) A) despite the difference 
in covalent radii for iron (1.26 A) and silver (1.44 A).10 It 
appears that the formation of two Ag-Fe bonds causes a 
lengthening of ~0.10 A to the Fe( 1 )-Fe(2) bond length since 
the Fe-Fe distances in the closely related species Fe2(CO)6-
[CHC(Ph)NEt2](PPh2)13 and Fe2(CO)6[CHC(Ph)-
NHC6Hn-C](PPh2)7 average 2.563 A. The Ag-Fe distances 
herein are apparently the first values to be reported for sil­
ver-iron metal-metal bonds. However, in Co(CO)4Ag-
[Me2AsC6H4As(Me)C6H4AsMe2] where there is a direct 
Co-Ag bond, the metal-metal distance is 2.66 (1) A.14 On this 
basis the observed Ag-Fe bond lengths represent predomi­
nantly single bonds. The silver atom is also coordinated weakly 
to one double bond of a toluene molecule (Ag-C(42), 2.51 (1); 
Ag-C(43), 2.50 (1) A) with the anion ClO4

- occupying in­
terstices in the lattice. An alternative stereochemical de­
scription of the molecule emphasizes the structural relationship 
to Fe2(CO)9. Thus, in III, there are three bridges (Ag, PPh2, 
CHC(Ph)NHMe) as in Fe2(CO)9 and the Fe(l)-Ag-Fe(2) 
(59.7 (O)0), Fe(l)-P-Fe(2) (74.1 (0)°), and the Fe(I)-
C(7)-Fe(2) (81.0 (O)0) angles are all acute (cf. Fe(I)-C-
Fe(2) of 77.4 (O)0 in Fe2(CO)9"). In electronic terms the PPh2 
and CHC(Ph)NHMe bridges provide a total of six electrons 
to the iron atoms in the parent molecule and in III; the same 
number of electrons are formally contributed by three CO 
bridges in Fe2(CO)9. It follows that, while each iron atom is 
electronically satisfied in Fe2(CO)6[CHC(Ph)NHMe](PPh2), 
there is a vacant coordination site on each metal atom. Seen 
in this light the insertion of Ag+, an electrophile and formal 
zero electron donor, into a bridging position is not unexpected. 
The effect of the Ag+ ion on the charge distribution in the 
Fe2(CO)6 fragment is surprisingly small; indeed the KCO) 

spectra of parent and silver adduct in THF are virtually su-
perimposable, although 31P NMR data in the same solvent 
suggest that the silver ion remains bonded to the Fe2 frame­
work in this solvent. 

The generality of the reaction of I with silver salts has been 
shown by the characterization of III (R = Ph; R' = NEt->, 
NPr2", NHEt, NHC6Hn-C, NC5Hi0-C)15 as well as the PF 6

-

and NO3- salts of III (R = Ph; R' = NHMe). The reactivity 
of I toward Ag+ may imply that other electrophiles such as H+, 
Hg2+, Cu+, Tl+, and a variety of 14- and 16-electron transition 
metal substrates should interact in similar fashion. This and 
the utility of 1,2 and 1,3-dipolar ligands in cluster synthesis are 
currently under investigation. 
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Carbene Addition to Metal Carbonyls—a Novel 
Reaction in Organometallic Chemistry. Direct 
Synthesis of ?;2-Ketene Complexes from Diazoalkanes1 

Sir: 

The carbonylation of carbenes has remained an unsolved 
problem since the early days of diazoalkane chemistry, al­
though this process might well be of considerable importance 
in some catalytic reactions of carbon monoxide, especially 
those with olefins and hydrogen. Turning their attention to the 
question of carbonylation of carbenes by metal carbonyls, 
originally raised by Staudinger2 as early as in 1916, Ruchardt 
and Schrauzer examined the action of tetracarbonyl nickel on 
diphenyldiazomethane and some of its homologues; according 
to eq 1 they isolated the corresponding free ketenes as final 
products and postulated unstable carbene complexes as in­
termediates which are said to be carbonylated via metal cen­
tered CO migrations.3 

Table I 

N i ( C O ) i 

, / 
C=N, :c=c=o ( 1 ! 

Recently, we provided the first preparative proofthat such 
a reaction is in fact possible. Diarylcarbene-manganese 
complexes such as (r)5-C5H5)Mn(CO)2[C(C6H5)2] were 
shown to undergo carbonylation under extreme pressure 
conditions to yield the corresponding stable r?2-ketene com­
plexes, e.g., (7?5-C5H5)Mn(CO)2[0=C=C(C6H5)2] (eq 2); 
the identity of both compounds was unequivocally established 
by means of X-ray diffraction techniques.4'130 However, the 
mechanism of these high-pressure reactions is not yet clear. 
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OC""" / 

CO ^C6H5 
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R = C H , 

Here, we report for the very first time the direct synthesis 
of r?2-ketene complexes from diazoalkanes via carbene com­
plexes and present clear proofthat these products do not result 
from carbon monoxide addition to the metal-carbene unit but 
rather from carbene addition to a metal carbonyl. 

The reaction of dicarbonyl(??5-cyclopentadienyl)(tetrahy-
drofuran)manganese (1) or its methyl derivative (2), respec­
tively, with 9-diazoanthrone( 10) (3) does not yield the corre­
sponding anthronyl-carbene complexes (4) expected on the 
basis of our previous results with diazomethane5 and a series 
of aryldiazomethanes,6 but the novel r?2-anthronylketene de-

bond lengths 

Mn-C(I) 
Mn-C(2) 
Mn-C(8) 
Mn-C(9) 
Mn-C(Cp) (av) 

C(8)-C(9) 
C(8)-0(8) 
C(I)-O(I) 
C(2)-0(2) 

pm 

182.8(6) 
176.9(7) 
197.6(6) 
224.2 (6) 
215.5 

144.8(8) 
119.4(8) 
113.3(8) 
115.0(10) 

bond angles 

C(l)-Mn-C(2) 
C(8)-Mn-C(9) 
C(8)-C(9)-C(10) 
C(10)-C(9)-C(22) 
C(8)-C(9)-C(22) 
0(8)-C(8)-C(9) 

degrees 

91.1(3) 
39.5(2) 

119.4(5) 
117.6(5) 
118.2(4) 
139.8(6) 

Figure 1. ORTEP representation of dicarbonyl (?/5-methylcyclopentadi-
enyl)(?j2-anthronylketene)manganese (5b). The thermal ellipsoids cor­
respond to 50% probability. 

rivatives (5) instead. Since we could not believe the formation 
of such compounds, both from our experience with the reac­
tivity pattern of diazoalkanes in metal carbonyl chemistry7 and 
the analytical and spectroscopic data of 5,8 we decided to 
perform a complete crystal structure analysis of 5b. This 
compound crystallizes from diethyl ether-methylene chloride 
in the triclinic space group Pl with a = 841.8 (4), b = 1058.7 
(5), c = 1179.3 (4) pm; a = 107.59 (3), /3 = 95.44 (2), y = 
112.18 (3)°; Z = 2. A total of 2557 nonzero reflections (/ > 
2.569 (T(I)) were recorded with an automatic, computer-con­
trolled Siemens diffractometer (60.09° > 2d > 4.47°; Mo Ka 
irradiation). The structure was solved and refined by standard 
methods (R = 5.9%) and is in perfect agreement with the IR 
spectroscopic evidence.8 An ORTEP representation is given in 
Figure 1. Some relevant bond distances and angles are given 
in Table I. Both of the phenyl rings of the anthronyl system are 
significantly bent to each other, the interplanar angle 
amounting to 157.0 (5)°. The central metal is surrounded by 
a distorted tetragonal-pyramidal arrangement of the atoms 
directly bonded to it (Cp, C(I), C(2), C(8), C(9)). 

How can the formation of the ??2-ketene complexes from 
9-diazoanthrone(10) (3) be explained? The following obser­
vations are of salient mechanistic importance. (1) Regardless 
of the reaction temperatures (—10 to +30 0C), the yields of 
5 are always below ~4% when equimolar ratios of the THF 
complexes 1 or 2, respectively, and 3 are employed. Consid­
erable amounts of anthrone and bisanthronyl are formed at the 
same time. (2) 9-Diazoanthrone( 10) (3) does not react at all 
with the parent compounds (?75-C5H5) Mn(CO)3 or (vs-
C5H4CH3)Mn(CO)3, respectively, even under more drastic 
conditions (refluxing THF, 20 h) than used for the reactions 
between 1 (or 2) and 3. Thus, the presence of the THF com-

0002-7863/79/1501-3133S01.00/0 © 1979 American Chemical Society 


